Controlling of Quadrotor UAV Using a Fuzzy System for Tuning the PID Gains in Hovering Mode
نویسندگان
چکیده
The studies in UAV modeling and control have been increased rapidly recently. This paper presents the modeling and control of a four rotor vertical take-off and landing (VTOL) unmanned air vehicle known as quadrotor aircraft. The modeling of the quadrotor will be described by using Euler-Newton equations. In order to stable the quadrotor and control the attitude of that, classical PID controller and a fuzzy system that adjusts the PID controller gains, have been designed. Although fuzzy control of various dynamical systems has been presented in literature, application of this technology to quadrotor helicopter control is quite new. A quadrotor has nonlinear characteristics where classical control methods are not adequate for stabilize that. On the other hand, fuzzy control is nonlinear and it is thus suitable for nonlinear system control. Matlab Simulink has been used to test, analyze and compare the performance of the controllers in simulations. This study showed that although, both of the classical PID and the fuzzy self-tuning PID controllers, can control the system properly, the second controller performed better than the classical PID controller. Key words—Quadrotor, Fuzzy control, Modeling, Attitude control, PID controller, MATLAB / Simulink .
منابع مشابه
Dynamic Modeling, Assembly and implementing Quadrotor UAV Using PID Controller
in the past decade, paying attention to the vertical fliers has been noted by most of the scientist and researchers, because of their exclusive features. The special capabilities of these, reducing radar identifier, low risk for human life, no restrictions on size and uses such as photography, survey, press coverage, checking, power lines, meteorological analysis, traffic, monitoring, in urban ...
متن کاملFuzzy Gains-Scheduling of an Integral Sliding Mode Controller for a Quadrotor Unmanned Aerial Vehicle
This paper investigates an Adaptive Fuzzy GainsScheduling Integral Sliding Mode Controller (AFGS-ISMC) design approach to deal with the attitude and altitude stabilization problem of an Unmanned Aerial Vehicles (UAV) precisely of a quadrotor. The Integral Sliding Mode Control (ISMC) seems to be an adequate control tool to remedy this problem. The selection of the controller parameters is done m...
متن کاملQuad-Rotor UAV: High-Fidelity Modeling and Nonlinear PID Control
Quad-rotor helicopter is an Unmanned Aerial Vehicle (UAV), whose lift is generated by four rotors located on the corner of X-shape. Due to simplicity of its dynamics and its ability to hover, quadrotor helicopter becomes as a popular platform for UAV. Current designs mostly consider a linear model for controller design. In this paper, we derivate nonlinear dynamic equations of the quadrotor UAV...
متن کاملAdaptive Fuzzy Control of Quadrotor
In this thesis, intelligent controllers are designed to control attitude for quadrotor UAV (Unmanned Aerial Vehicle).Quadrotors have a variety of applications in real time e.g. surveillance, inspection, search, rescue and reducing the human force in undesirable conditions. Quadrotors are generally unstable systems; the kinematics of quadrotor resembles the kinematics of inverted pendulum. In or...
متن کاملControl of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller
This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position contro...
متن کامل